17391 measured reflections

 $R_{\rm int} = 0.024$

4385 independent reflections

3689 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diaqua(2,9-dimethyl-1,10-phenanthroline- $\kappa^2 N, N'$)(4-hydroxybenzoato- $\kappa^2 O, O'$)cobalt(II) nitrate dihydrate

Cuiping Zhai,^a Fengmei Yan^b and Peizheng Zhao^{c*}

^aCollege of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, People's Republic of China, ^bDepartment of Chemistry and Chemical Engineering, Huanghuai University, Zhumadian 463000, People's Republic of China, and ^cCollege of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, People's Republic of China Correspondence e-mail: pz_zhao@hotmail.com

Received 28 October 2008; accepted 16 November 2008

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.003 Å; R factor = 0.029; wR factor = 0.081; data-to-parameter ratio = 13.7.

In the title compound, $[Co(C_7H_5O_3)(C_{14}H_{12}N_2)(H_2O)_2]$ -NO₃·2H₂O, the Co^{II} ion is six-coordinated by two N atoms of a 2,9-dimethyl-1,10-phenanthroline (dmphen) ligand, two carboxylate O atoms of one 4-hydroxybenzoate anion and two O atoms of two water molecules, in a distorted octahedral environment; the two water molecules occupy the apical positions. In the crystal structure, the ionic units and water molecules are linked through O–H···O hydrogen bonds, leading to the formation of a three-dimensional network. In addition, π - π interactions between a pyridine ring of the dmphen ligand and the benzene ring of the hydroxybenzoate anion [centroid–centroid separation = 3.6861 (3) Å] are observed.

Related literature

For related structures, see: Xuan *et al.* (2007); Xuan & Zhao (2007*a*,*b*).

Experimental

Crystal data

$$\begin{split} & [\mathrm{Co}(\mathrm{C}_{7}\mathrm{H}_{5}\mathrm{O}_{3})(\mathrm{C}_{14}\mathrm{H}_{12}\mathrm{N}_{2})(\mathrm{H}_{2}\mathrm{O})_{2}] \cdot & \beta = 94.602~(1)^{\circ} \\ & \mathrm{NO}_{3}\cdot 2\mathrm{H}_{2}\mathrm{O} & V = 2363.5~(3)~\mathrm{\AA}^{3} \\ & M_{r} = 538.37 & Z = 4 \\ & \mathrm{Monoclinic}, P_{2}_{1}/c & \mathrm{Mo}~\mathrm{K}\alpha~\mathrm{radiation} \\ & a = 9.8001~(8)~\mathrm{\AA} & \mu = 0.79~\mathrm{mm}^{-1} \\ & b = 22.2638~(19)~\mathrm{\AA} & T = 291~(2)~\mathrm{K} \\ & c = 10.8676~(9)~\mathrm{\AA} & 0.35 \times 0.25 \times 0.14~\mathrm{mm} \end{split}$$

Data collection

Buker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 1997) $T_{\min} = 0.771, T_{\max} = 0.899$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	319 parameters
$wR(F^2) = 0.081$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
4385 reflections	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

Table 1 Selected bond lengths (Å).

Co1-O5	2.0685 (14)	Co1-N2	2.1357 (15)
Co1-O4	2.1187 (14)	Co1-O1	2.1425 (13)
Co1-N1	2.1213 (15)	Co1-O2	2.2311 (13)

Table 2		

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O10−H8W···O6	0.83	2.26	2.960 (3)	142
O9-H5WO6	0.83	2.09	2.904 (3)	169
$O9-H6W \cdot \cdot \cdot O7^{i}$	0.83	2.09	2.888 (3)	161
$O10-H7W \cdot \cdot \cdot O8^{ii}$	0.83	2.01	2.829 (3)	169
$O5-H4W \cdot \cdot \cdot O10$	0.81	1.93	2.720 (2)	167
$O4-H2W \cdot \cdot \cdot O2^{iii}$	0.83	2.01	2.846 (2)	180
$O5-H3W \cdot \cdot \cdot O1^{iv}$	0.82	2.05	2.826 (2)	157
$O4-H1W \cdot \cdot \cdot O9^{v}$	0.82	1.96	2.758 (2)	164
$O3-H3\cdots O8^{vi}$	0.82	2.57	3.133 (3)	127
$O3-H3\cdots O7^{vi}$	0.82	2.07	2.861 (3)	164

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z + 2; (iv) -x, -y + 1, -z + 2; (v) x, y, z + 1; (vi) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2008).

Financial support from the Science Fund of Henan Province for Distinguished Young Scholars (grant No. 07410051005) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2703).

metal-organic compounds

References

Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Westrip, S. P. (2008). *publCIF*. In preparation. Xuan, X. & Zhao, P. (2007*a*). *Acta Cryst.* E**63**, m2856. Xuan, X. & Zhao, P. (2007*b*). *Acta Cryst.* E**63**, m3009. Xuan, X.-P., Zhao, P.-Z. & Tang, Q.-H. (2007). *Acta Cryst.* E**63**, m2405.

Acta Cryst. (2008). E64, m1591-m1592 [doi:10.1107/S1600536808038117]

Diaqua(2,9-dimethyl-1,10-phenanthroline- $\kappa^2 N, N'$)(4-hydroxybenzoato- $\kappa^2 O, O'$)cobalt(II) nitrate dihydrate

C. Zhai, F. Yan and P. Zhao

Comment

We have recently reported the syntheses and crystal structures of [Ni(dmphen)(3-OH-benzoate)(H₂O)NO₃] (Xuan & Zhao, 2007*a*), [Ni(dmphen)(benzoate)(H₂O)NO₃] (Xuan *et al.*, 2007) and [Co(dmphen)(3-OH-benzoate)(H₂O)NO₃](Xuan & Zhao, 2007*b*) complexes. Now, we report here the crystal structure of the title compound.

Each Co^{II} ion is six-coordinated by two N atoms from a dmphen ligand, and two O atoms from two water molecules and two O atoms from carboxylate group of one 4-hydroxy-benzoate anion (Fig.1). The CoO_4N_2 unit forms a distorted octahedral geometry, with two O atoms of two water molecules occupying the axial positions at 2.0685 (14) or 2.1187 (14) Å (Table 1). The equatorial plane is defined by the N atoms of dmphen and carboxy O atoms of the 3-hydroxybenzoate anion.

In the crystal structure, an extensive series of O—H···O hydrogen bonds, involving the coordinated and solvent water molecules, 4-hydroxybenzoate and nitrate anions, lead to a supramolecular network structure (Table 2 and Fig. 2). In addition, inversion related molecules are linked via π - π interactions involving the pyridine ring of the dmphen (N1/C1-C4/C12; centroid *Cg*1) ligand and the benzene ring of the hydroxybenzoate (C15—C20; centroid *Cg*2) anion (Fig.3); the *Cg*1—*Cg*2ⁱⁱⁱ distance is 3.6861 (11) Å (symmetry code is given in Table 2). This combination of hydrogen bonds and stacking interactions build a three-dimensional network.

Experimental

To a solution of 2,9-dimethyl-1,10-phenanthroline (0.1095 g, 0.5 mmol), 4-hydroxy-benzoate (0.1382 g, 1 mmol) and sodium hydroxide (0.03740 g, 1 mmol) in ethanol-water (v:v 1:1, 15 ml) was added a solution of Ni(NO₃)₂.6H₂O (0.1457 g, 0.5 mmol) in distilled water (10 ml). The resulting solution was stirred for 5 h at 323 K and then the precipitate obtained was filtered. Pink single crystals of the title compound were obtained by slow evaporation of the filtrate over 80 d.

Refinement

C-bound H atoms were placed in calculated positions and were included in the refinement in the riding-model approximation, with C-H distances of 0.93 or 0.96 Å and $U_{iso}(H)$ values of 1.2 or 1.5 times $U_{eq}(C)$. The hydroxyl H atom was also placed in the calculated position (O-H = 0.82 Å) and refined with free torsion angles to fit the electron density. Water H atoms were located in a difference Fourier map and were allowed to ride on the parent atoms. For all O-bound H atoms the $U_{iso}(H)$ values were set at 1.5 $U_{eq}(O)$.

Figures

Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids.

Fig. 2. The crystal structure of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.

Diaqua(2,9-dimethyl-1,10-phenanthroline- $\kappa^2 N$, N')(4- hydroxybenzoato- $\kappa^2 O$, O') cobalt(II) nitrate dihydrate

Crystal data

 $[Co(C_7H_5O_3)(C_{14}H_{12}N_2)(H_2O)_2]NO_3 \cdot 2H_2O$ $F_{000} = 1116$ $M_r = 538.37$ $D_{\rm x} = 1.513 \ {\rm Mg \ m}^{-3}$ Mo Kα radiation Monoclinic, $P2_1/c$ $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 2ybc Cell parameters from 6780 reflections *a* = 9.8001 (8) Å $\theta = 2.3\text{--}27.4^{o}$ b = 22.2638 (19) Å $\mu = 0.79 \text{ mm}^{-1}$ c = 10.8676 (9) Å T = 291 (2) K $\beta = 94.602 (1)^{\circ}$ Block, pink $0.35 \times 0.25 \times 0.14 \text{ mm}$ $V = 2363.5 (3) \text{ Å}^3$ Z = 4

Data collection

Buker SMART CCD area-detector diffractometer	4385 independent reflections
Radiation source: fine-focus sealed tube	3689 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.024$
T = 291(2) K	$\theta_{\text{max}} = 25.5^{\circ}$
φ and ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1997)	$h = -11 \rightarrow 11$
$T_{\min} = 0.771, \ T_{\max} = 0.899$	$k = -26 \rightarrow 26$
17391 measured reflections	$l = -12 \rightarrow 13$

Refinement

Hydrogen site location: inferred from neighbouring Refinement on F^2 sites Least-squares matrix: full H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0425P)^2 + 0.9518P]$ $R[F^2 > 2\sigma(F^2)] = 0.029$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.002$ $wR(F^2) = 0.081$ $\Delta \rho_{max} = 0.36 \text{ e } \text{\AA}^{-3}$ S = 1.01 $\Delta \rho_{\text{min}} = -0.23 \text{ e} \text{ Å}^{-3}$ 4385 reflections Extinction correction: SHELXL97 (Sheldrick, 2008), 319 parameters $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Primary atom site location: structure-invariant direct Extinction coefficient: 0.0047 (4) methods Secondary atom site location: difference Fourier map Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and

goodness of fit S are based on F^2 , conventional R-factors R are based

on F, with F set to zero for negative F^2 . The threshold expression of

 $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is

not relevant to the choice of reflections for refinement. R-factors based

on F^2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotropic	or	equivalent	isotropic	displ	lacement	parameters	(Å	2)
				rear in the second seco		1	The second secon	···· r ·		r · · · · · · · ·	1	

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Col	0.24510 (2)	0.564923 (11)	0.97828 (2)	0.02979 (10)
01	0.17733 (13)	0.49074 (6)	1.08320 (12)	0.0366 (3)
02	0.33021 (13)	0.47337 (6)	0.95100 (12)	0.0374 (3)

O3	0.2669 (2)	0.21307 (7)	1.18959 (16)	0.0605 (5)
H3	0.2922	0.1902	1.1368	0.091*
O4	0.41725 (13)	0.57880 (6)	1.10585 (13)	0.0393 (3)
H1W	0.3985	0.5685	1.1749	0.059*
H2W	0.4911	0.5635	1.0890	0.059*
O5	0.08164 (14)	0.54783 (7)	0.85063 (13)	0.0463 (4)
H3W	0.0120	0.5431	0.8866	0.070*
H4W	0.0724	0.5513	0.7766	0.070*
O6	0.2587 (2)	0.46630 (9)	0.4839 (2)	0.0894 (7)
07	0.3605 (2)	0.38408 (10)	0.5460 (2)	0.0809 (6)
08	0.1450 (2)	0.38603 (9)	0.5079 (2)	0.0793 (6)
N1	0.32511 (15)	0.62761 (7)	0.85585 (14)	0.0318 (3)
N2	0.15796 (15)	0.64623 (7)	1.04080 (15)	0.0335 (4)
N3	0.2548 (2)	0.41299 (10)	0.51267 (18)	0.0539 (5)
C1	0.40177 (19)	0.61783 (9)	0.76179 (18)	0.0365 (4)
C2	0.4510(2)	0.66576 (10)	0.6932 (2)	0.0453 (5)
H2	0.5028	0.6578	0.6270	0.054*
C3	0.4234 (2)	0.72318 (10)	0.7231 (2)	0.0488 (5)
H3A	0.4580	0.7547	0.6788	0.059*
C4	0.3424 (2)	0.73521 (9)	0.8210(2)	0.0411 (5)
C5	0.3063 (2)	0.79459 (9)	0.8560 (2)	0.0508 (6)
H5A	0.3428	0.8274	0.8170	0.061*
C6	0.2207 (3)	0.80379 (9)	0.9444 (2)	0.0522 (6)
H6A	0.1975	0.8428	0.9649	0.063*
C7	0.1645 (2)	0.75432 (9)	1.0074 (2)	0.0425 (5)
C8	0.0722 (2)	0.76153 (10)	1.0991 (2)	0.0523 (6)
H8A	0.0427	0.7997	1.1195	0.063*
C9	0.0264(2)	0 71247 (10)	1 1575 (2)	0.0495 (6)
H9	-0.0353	0.7172	1.2176	0.059*
C10	0.07125 (19)	0.65450 (9)	1.12827 (19)	0.0393 (5)
C11	0.20282 (19)	0.69525 (8)	0.98025 (18)	0.0343 (4)
C12	0.29325(18)	0.68556 (8)	0 88414 (18)	0.0334(4)
C13	0.4357 (2)	0.55479 (10)	0.7305 (2)	0.0475 (5)
H13A	0.5202	0.5434	0.7752	0.071*
H13B	0 4450	0 5517	0.6435	0.071*
HI3C	0.3638	0.5286	0.7527	0.071*
C14	0.0247(2)	0.60129 (10)	1 1968 (2)	0.0500(6)
H14A	-0.0272	0.5751	1 1406	0.075*
H14B	-0.0317	0.6144	1 2599	0.075*
H14C	0.1028	0.5802	1 2340	0.075*
C15	0.25751 (18)	0.38985 (8)	1.06962 (18)	0.0315 (4)
C16	0.21346 (19)	0.37361 (8)	1 18382 (18)	0.0319(1) 0.0350(4)
H16	0.1813	0.4030	1 2350	0.042*
C17	0.2169(2)	0.31459 (9)	1 22188 (19)	0.0398 (5)
H17	0 1887	0 3044	1 2989	0.048*
C18	0.2626 (2)	0.27028 (9)	1 1450 (2)	0.0401 (5)
C19	0.2020(2)	0.28577 (9)	1 03029 (19)	0.0408(5)
H19	0 3334	0.2561	0.9781	0.049*
C20	0.3033 (2)	0.34506 (9)	0.99351 (19)	0.0374 (4)
020	0.5055 (2)	0.0 1000 (7)	0.77551 (17)	(ד) די 20.0

H20	0.3333	0.3552	0.9172	0.045*
C21	0.25521 (18)	0.45407 (9)	1.03250 (17)	0.0326 (4)
O9	0.38611 (19)	0.56246 (7)	0.35357 (16)	0.0590 (4)
H5W	0.3520	0.5320	0.3824	0.089*
H6W	0.4632	0.5696	0.3884	0.089*
O10	0.0934 (2)	0.55782 (10)	0.60222 (17)	0.0801 (6)
H7W	0.0195	0.5697	0.5695	0.120*
H8W	0.1089	0.5228	0.5809	0.120*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	0.02697 (15)	0.02584 (15)	0.03723 (16)	0.00085 (9)	0.00663 (10)	0.00142 (10)
01	0.0339 (7)	0.0294 (7)	0.0479 (8)	0.0028 (5)	0.0117 (6)	0.0027 (6)
O2	0.0354 (7)	0.0328 (7)	0.0457 (8)	-0.0002 (6)	0.0131 (6)	0.0061 (6)
O3	0.0890 (13)	0.0308 (8)	0.0644 (11)	0.0015 (8)	0.0237 (10)	0.0087 (7)
O4	0.0313 (7)	0.0439 (8)	0.0428 (8)	0.0022 (6)	0.0042 (6)	0.0025 (6)
O5	0.0323 (7)	0.0644 (10)	0.0423 (8)	-0.0086 (7)	0.0028 (6)	0.0030 (7)
O6	0.123 (2)	0.0482 (12)	0.1012 (16)	-0.0095 (11)	0.0364 (15)	0.0098 (10)
07	0.0641 (12)	0.0851 (14)	0.0940 (16)	0.0112 (11)	0.0088 (11)	-0.0044 (12)
08	0.0701 (13)	0.0730 (13)	0.0944 (15)	-0.0149 (11)	0.0030 (11)	0.0118 (11)
N1	0.0275 (8)	0.0300 (8)	0.0381 (9)	0.0009 (6)	0.0030 (6)	0.0036 (7)
N2	0.0275 (8)	0.0311 (8)	0.0421 (9)	0.0027 (6)	0.0030 (7)	-0.0035 (7)
N3	0.0643 (14)	0.0494 (12)	0.0491 (12)	-0.0014 (10)	0.0115 (10)	-0.0038 (9)
C1	0.0293 (10)	0.0426 (11)	0.0375 (11)	0.0018 (8)	0.0022 (8)	0.0050 (9)
C2	0.0391 (11)	0.0553 (14)	0.0422 (12)	-0.0014 (10)	0.0080 (9)	0.0113 (10)
C3	0.0433 (12)	0.0488 (13)	0.0542 (14)	-0.0077 (10)	0.0030 (10)	0.0193 (11)
C4	0.0393 (11)	0.0342 (11)	0.0484 (12)	-0.0040 (8)	-0.0049 (9)	0.0097 (9)
C5	0.0586 (14)	0.0299 (11)	0.0622 (15)	-0.0052 (10)	-0.0047 (12)	0.0104 (10)
C6	0.0642 (15)	0.0247 (10)	0.0656 (16)	0.0058 (10)	-0.0087 (12)	0.0015 (10)
C7	0.0411 (12)	0.0333 (11)	0.0516 (13)	0.0077 (9)	-0.0055 (9)	-0.0022 (9)
C8	0.0513 (13)	0.0366 (12)	0.0684 (16)	0.0153 (10)	0.0008 (11)	-0.0092 (11)
С9	0.0425 (12)	0.0484 (13)	0.0589 (14)	0.0131 (10)	0.0111 (10)	-0.0110 (11)
C10	0.0298 (10)	0.0410 (11)	0.0472 (12)	0.0036 (8)	0.0041 (8)	-0.0066 (9)
C11	0.0306 (9)	0.0285 (10)	0.0426 (11)	0.0013 (8)	-0.0044 (8)	0.0010 (8)
C12	0.0277 (9)	0.0306 (10)	0.0411 (11)	0.0005 (7)	-0.0028 (8)	0.0034 (8)
C13	0.0509 (13)	0.0468 (12)	0.0471 (13)	0.0047 (10)	0.0180 (10)	0.0009 (10)
C14	0.0475 (13)	0.0481 (13)	0.0576 (14)	0.0002 (10)	0.0235 (11)	-0.0060 (11)
C15	0.0272 (9)	0.0291 (9)	0.0385 (10)	-0.0024 (7)	0.0041 (8)	0.0015 (8)
C16	0.0323 (10)	0.0337 (10)	0.0396 (11)	0.0005 (8)	0.0071 (8)	-0.0011 (8)
C17	0.0419 (11)	0.0371 (11)	0.0416 (11)	-0.0036 (9)	0.0109 (9)	0.0064 (9)
C18	0.0424 (11)	0.0292 (10)	0.0489 (12)	-0.0045 (8)	0.0041 (9)	0.0052 (9)
C19	0.0455 (11)	0.0324 (10)	0.0453 (12)	-0.0011 (9)	0.0082 (9)	-0.0059 (9)
C20	0.0389 (11)	0.0373 (11)	0.0369 (11)	-0.0017 (9)	0.0090 (8)	0.0007 (9)
C21	0.0283 (9)	0.0324 (10)	0.0373 (11)	-0.0018 (8)	0.0028 (8)	0.0009 (8)
09	0.0772 (12)	0.0438 (9)	0.0572 (10)	0.0025 (8)	0.0119 (9)	0.0023 (7)
O10	0.0746 (13)	0.1064 (17)	0.0584 (12)	0.0092 (11)	0.0001 (10)	-0.0031 (11)

Geometric parameters (Å, °)

Co1—O5	2.0685 (14)	C6—C7	1.430 (3)
Co1—O4	2.1187 (14)	C6—H6A	0.93
Co1—N1	2.1213 (15)	C7—C11	1.406 (3)
Co1—N2	2.1357 (15)	С7—С8	1.407 (3)
Co101	2.1425 (13)	C8—C9	1.358 (3)
Co1—O2	2.2311 (13)	C8—H8A	0.93
O1—C21	1.273 (2)	C9—C10	1.408 (3)
O2—C21	1.270 (2)	С9—Н9	0.93
O3—C18	1.362 (2)	C10—C14	1.490 (3)
O3—H3	0.82	C11—C12	1.439 (3)
O4—H1W	0.82	C13—H13A	0.96
O4—H2W	0.83	C13—H13B	0.96
O5—H3W	0.82	C13—H13C	0.96
O5—H4W	0.81	C14—H14A	0.96
O6—N3	1.229 (3)	C14—H14B	0.96
O7—N3	1.249 (3)	C14—H14C	0.96
O8—N3	1.229 (3)	C15—C20	1.392 (3)
N1-C1	1.334 (2)	C15—C16	1.394 (3)
N1-C12	1.368 (2)	C15—C21	1.485 (3)
N2-C10	1.338 (2)	C16—C17	1.377 (3)
N2-C11	1.365 (2)	C16—H16	0.93
C1—C2	1.409 (3)	C17—C18	1.390 (3)
C1—C13	1.488 (3)	C17—H17	0.93
C2—C3	1.352 (3)	C18—C19	1.386 (3)
С2—Н2	0.93	C19—C20	1.379 (3)
C3—C4	1.403 (3)	C19—H19	0.93
С3—НЗА	0.93	C20—H20	0.93
C4—C12	1.407 (3)	O9—H5W	0.83
C4—C5	1.428 (3)	O9—H6W	0.83
C5—C6	1.341 (3)	O10—H7W	0.82
С5—Н5А	0.93	O10—H8W	0.83
O5—Co1—O4	177.28 (6)	C11—C7—C6	120.0 (2)
O5—Co1—N1	90.33 (6)	C8—C7—C6	123.0 (2)
O4—Co1—N1	89.97 (6)	C9—C8—C7	119.7 (2)
O5—Co1—N2	93.52 (6)	С9—С8—Н8А	120.2
O4—Co1—N2	89.19 (6)	C7—C8—H8A	120.2
N1—Co1—N2	79.59 (6)	C8—C9—C10	120.7 (2)
05—Co1—O1	87.63 (6)	С8—С9—Н9	119.7
04—Co1—O1	91.65 (5)	С10—С9—Н9	119.7
N1—Co1—O1	170.71 (6)	N2—C10—C9	120.96 (19)
N2—Co1—O1	109.58 (6)	N2-C10-C14	118.91 (17)
O5—Co1—O2	91.17 (6)	C9—C10—C14	120.12 (19)
O4—Co1—O2	86.19 (5)	N2—C11—C7	123.02 (19)
N1—Co1—O2	110.90 (5)	N2-C11-C12	118.08 (16)
N2—Co1—O2	168.50 (6)	C7—C11—C12	118.90 (18)
01—Co1—O2	60.11 (5)	N1—C12—C4	122.56 (18)
			122.00 (10)

C21—O1—Co1	92.40 (11)	N1—C12—C11	118.00 (16)
C21—O2—Co1	88.46 (11)	C4—C12—C11	119.42 (18)
С18—О3—Н3	109.5	C1—C13—H13A	109.5
Co1—O4—H1W	109.5	C1—C13—H13B	109.5
Co1—O4—H2W	117.1	H13A—C13—H13B	109.5
H1W—O4—H2W	110.5	C1—C13—H13C	109.5
Co1—O5—H3W	109.5	H13A—C13—H13C	109.5
Co1—O5—H4W	132.1	H13B—C13—H13C	109.5
H3W—O5—H4W	117.1	C10-C14-H14A	109.5
C1—N1—C12	118.60 (16)	C10-C14-H14B	109.5
C1—N1—Co1	129.23 (13)	H14A—C14—H14B	109.5
C12—N1—Co1	112.14 (12)	C10-C14-H14C	109.5
C10—N2—C11	118.69 (16)	H14A—C14—H14C	109.5
C10—N2—Co1	129.48 (13)	H14B—C14—H14C	109.5
C11—N2—Co1	111.83 (12)	C20—C15—C16	118.73 (17)
O6—N3—O8	120.4 (2)	C20—C15—C21	121.77 (17)
O6—N3—O7	122.0 (2)	C16—C15—C21	119.49 (17)
O8—N3—O7	117.6 (2)	C17—C16—C15	120.86 (18)
N1—C1—C2	121.30 (19)	С17—С16—Н16	119.6
N1—C1—C13	118.61 (17)	C15-C16-H16	119.6
C2—C1—C13	120.09 (19)	C16—C17—C18	119.85 (18)
C3—C2—C1	120.4 (2)	С16—С17—Н17	120.1
С3—С2—Н2	119.8	С18—С17—Н17	120.1
С1—С2—Н2	119.8	O3—C18—C19	123.33 (19)
C2—C3—C4	119.94 (19)	O3—C18—C17	116.85 (18)
С2—С3—НЗА	120.0	C19—C18—C17	119.79 (18)
С4—С3—НЗА	120.0	C20-C19-C18	120.15 (19)
C3—C4—C12	117.17 (19)	С20—С19—Н19	119.9
C3—C4—C5	123.1 (2)	С18—С19—Н19	119.9
C12—C4—C5	119.7 (2)	C19—C20—C15	120.59 (19)
C6—C5—C4	121.0 (2)	С19—С20—Н20	119.7
С6—С5—Н5А	119.5	C15—C20—H20	119.7
C4—C5—H5A	119.5	O2—C21—O1	119.03 (18)
C5—C6—C7	120.8 (2)	O2—C21—C15	121.20 (17)
С5—С6—Н6А	119.6	O1—C21—C15	119.77 (16)
С7—С6—Н6А	119.6	H5W—O9—H6W	111.3
C11—C7—C8	116.9 (2)	H7W—O10—H8W	110.8
O5—Co1—O1—C21	93.01 (11)	C11—N2—C10—C9	0.2 (3)
O4—Co1—O1—C21	-84.36 (11)	Co1—N2—C10—C9	179.14 (15)
N2-Co1-O1-C21	-174.09 (11)	C11-N2-C10-C14	-178.51 (18)
O2—Co1—O1—C21	0.29 (10)	Co1—N2—C10—C14	0.4 (3)
O5—Co1—O2—C21	-86.88 (11)	C8—C9—C10—N2	-1.2 (3)
O4—Co1—O2—C21	93.81 (11)	C8—C9—C10—C14	177.5 (2)
N1—Co1—O2—C21	-177.68 (10)	C10—N2—C11—C7	1.4 (3)
N2—Co1—O2—C21	27.2 (3)	Co1—N2—C11—C7	-177.69 (15)
O1—Co1—O2—C21	-0.29 (10)	C10—N2—C11—C12	-178.40 (17)
O5—Co1—N1—C1	-83.02 (16)	Co1—N2—C11—C12	2.5 (2)
04—Co1—N1—C1	94.28 (16)	C8—C7—C11—N2	-2.0 (3)
N2-Co1-N1-C1	-176.54 (17)	C6—C7—C11—N2	176.94 (19)

O2—Co1—N1—C1	8.36 (18)	C8—C7—C11—C12	177.86 (18)
O5-Co1-N1-C12	98.92 (13)	C6-C7-C11-C12	-3.2 (3)
O4—Co1—N1—C12	-83.79 (12)	C1—N1—C12—C4	-2.5 (3)
N2—Co1—N1—C12	5.40 (12)	Co1—N1—C12—C4	175.82 (14)
O2-Co1-N1-C12	-169.70 (11)	C1—N1—C12—C11	175.81 (17)
O5-Co1-N2-C10	87.09 (17)	Co1—N1—C12—C11	-5.9 (2)
O4-Co1-N2-C10	-93.10 (17)	C3—C4—C12—N1	2.1 (3)
N1—Co1—N2—C10	176.78 (18)	C5-C4-C12-N1	-179.36 (18)
O1—Co1—N2—C10	-1.64 (18)	C3—C4—C12—C11	-176.18 (18)
O2-Co1-N2-C10	-26.8 (4)	C5-C4-C12-C11	2.4 (3)
O5—Co1—N2—C11	-93.90 (13)	N2-C11-C12-N1	2.4 (3)
O4—Co1—N2—C11	85.91 (13)	C7—C11—C12—N1	-177.50 (17)
N1—Co1—N2—C11	-4.21 (12)	N2-C11-C12-C4	-179.31 (17)
O1-Co1-N2-C11	177.37 (12)	C7—C11—C12—C4	0.8 (3)
O2—Co1—N2—C11	152.2 (2)	C20-C15-C16-C17	1.0 (3)
C12—N1—C1—C2	0.8 (3)	C21-C15-C16-C17	-178.71 (17)
Co1—N1—C1—C2	-177.17 (14)	C15-C16-C17-C18	-1.1 (3)
C12—N1—C1—C13	-179.64 (17)	C16—C17—C18—O3	178.27 (19)
Co1—N1—C1—C13	2.4 (3)	C16-C17-C18-C19	0.0 (3)
N1—C1—C2—C3	1.2 (3)	O3—C18—C19—C20	-176.9 (2)
C13—C1—C2—C3	-178.3 (2)	C17-C18-C19-C20	1.2 (3)
C1—C2—C3—C4	-1.6 (3)	C18—C19—C20—C15	-1.4 (3)
C2—C3—C4—C12	0.0 (3)	C16-C15-C20-C19	0.2 (3)
C2—C3—C4—C5	-178.5 (2)	C21—C15—C20—C19	179.93 (18)
C3—C4—C5—C6	175.1 (2)	Co1-O2-C21-O1	0.49 (17)
C12—C4—C5—C6	-3.3 (3)	Co1-O2-C21-C15	-179.24 (16)
C4—C5—C6—C7	0.9 (4)	Co1-01-C21-02	-0.51 (17)
C5—C6—C7—C11	2.4 (3)	Co1-01-C21-C15	179.23 (15)
C5—C6—C7—C8	-178.8 (2)	C20-C15-C21-O2	-21.5 (3)
C11—C7—C8—C9	0.9 (3)	C16—C15—C21—O2	158.19 (18)
C6—C7—C8—C9	-178.0 (2)	C20-C15-C21-O1	158.77 (18)
C7—C8—C9—C10	0.6 (3)	C16—C15—C21—O1	-21.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O10—H8W…O6	0.83	2.26	2.960 (3)	142
O9—H5W…O6	0.83	2.09	2.904 (3)	169
O9—H6W…O7 ⁱ	0.83	2.09	2.888 (3)	161
O10—H7W…O8 ⁱⁱ	0.83	2.01	2.829 (3)	169
O5—H4W…O10	0.81	1.93	2.720 (2)	167
O4—H2W···O2 ⁱⁱⁱ	0.83	2.01	2.846 (2)	180
O5—H3W···O1 ^{iv}	0.82	2.05	2.826 (2)	157
O4— $H1W$ ···O9 ^v	0.82	1.96	2.758 (2)	164
O3—H3…O8 ^{vi}	0.82	2.57	3.133 (3)	127
O3—H3…O7 ^{vi}	0.82	2.07	2.861 (3)	164
		1 1 1 1 2 (1)	.1	

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z+2; (iv) -x, -y+1, -z+2; (v) x, y, z+1; (vi) x, -y+1/2, z+1/2.

Fig. 1

